- (b) (i) Explain the issues and challenges in active filter design with example. (5)
 - (ii) The circuit given is inverting amplifier except the resistor R_3 is added. The circuit parameters are $R_1=5~{\rm k}\Omega$, $R_2=25~{\rm k}\Omega$, $R_3=12.5~{\rm k}\Omega$, $R_1=5~{\rm k}\Omega$.
 - (1) Derive Vaut expression.
 - (2) Derive expression for I3.
 - (3) What happens to I_3 if R_3 is doubled? (($R_3 = 25 \text{ k}\Omega$) (10)

80122

Reg. Not:

Question Paper Code: 80122

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019

Fourth Semester

Electronics and Communication Engineering

EC 8453 - LINEAR INTEGRATED CIRCUITS

(Common to B.E. Medical Electronics/B.E. Robotics and Automation Engineering/B.E. Biomedical Engineering)

(Regulation 2017)

Time: Three hours

Maximum: 100 marks

(Codes / Tables / Charts to be permitted, if any may be indicated)

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. State the significance of current mirror circuit.
- 2. Mention the application of LF155.
- 3. Find the gain of V_o/V_i of the circuit.

- 4. How does a zero crossing detector work?
- 5. What is Gilbert multiplier cell?
- 6. List the basic building blocks of PLL.

- 7. Define settling time.
- 8. What is the largest value of output voltage from an 8-bit DAC that produces 1.0 V for a digital input of 00110010?
- 9. What are the types of multivibrator?
- 10. State the function of Opto coupler.

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

 (a) List and explain the function of all the basic building blocks of an op-amp.

0

- (b) Explain the DC and AC performance characteristics of Op Amp.
- 12. (a) Explain the operation of

i) Schmitt Trigger

(ii) Precision rectifier.

Or

(b) Find V_0 . Verify that if R3/R4 = R1/R2, the circuit is an instrumentation amplifier with gain A = 1 + R2/R1.

 (a) Explain PLL characteristics and derive the lock range and capture range equations.

0

(b) Explain any two applications of PLL.

- 14. (a) (i) Assume the following values for the ADC clock frequency = 1 MHz;
 DAC has F.S. output = 10.23 V and a 10-bit input. Determine the following values:
 - The digital equivalent obtained for the input voltage VA = 3.728 V.
 - 2) The conversion time.
 - The resolution of this converter in percentage. (9)
 - (ii) A 10-bit DAC has a step size of 10 mV. Determine the full-scale output voltage and the percentage resolution. (4)

Or

- (b) Explain the working of R-2R ladder DAC with a circuit schematic. List converter characteristics.
- (a) Explain the working principle of Triangular wave generator circuit using op amp and mention its application.

Or

(b) Explain the following ICs function and application: (i) Audio Power Amplifier (ii) Video Amplifier.

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

- (a) (i) Suppose that an amplifier with input resistance of 500 kΩ or greater is needed and a voltage gain of -10. The feedback resistors are to be implemented in integrated form and have values of 10 kΩ or less to conserve chip area. Choose a suitable circuit configuration and specify the resistance values. Finally, estimate the resistor tolerance needed so that the gain magnitude maintained within 5% of its nominal values.
 - (ii) Find the output expression for the figure shown. (8)

Fig. 16 (a) (ii)

Or

(7)